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Abstract—Hyperspectral unmixing (HU) is one of the crucial
steps for many hyperspectral applications, including material clas-
sification and recognition. In the last decade, non-negative matrix
factorization (NMF) and its extensions have been widely studied
and have achieved advanced performances in HU. Unfortunately,
most of the existing NMF-based methods make the assumption
that the hyperspectral data are only corrupted by Gaussian noise.
In real applications, the hyperspectral data are inevitably cor-
rupted by sparse noise, which includes impulse noise, stripes,
deadlines, and others types of noise. By separately modeling the
sparse noise and Gaussian noise, a robust NMF (RNMF) model
is subsequently introduced to unmix the hyperspectral data. The
proposed RNMF model is able to simultaneously handle Gaussian
noise and sparse noise, and can be efficiently learned with ele-
gant update rules. In addition, sparsity regularizers are added to
restrict the abundance maps in the RNMF, with the consideration
of the sparse property of the material types within the hyper-
spectral scene. The experimental results with simulated and real
data confirm the superiority of the proposed sparsity-regularized
RNMF methods compared to the traditional NMF methods.

Index Terms—Hyperspectral unmixing (HU), robust non-
negative matrix factorization (RNMF), sparse noise, sparsity reg-
ularizer.

I. INTRODUCTION

I N recent years, with the wealth of available spectral infor-
mation, HSIs have been widely used in practical applica-

tions such as food safety, pharmaceutical process monitoring
and quality control, biomedical applications, and so on [1], [2].
However, due to the low spatial resolution and the complexity
of the terrain, a single pixel in an HSI sometimes contains dif-
ferent materials, and is called a “mixed pixel.” The existence of
mixed pixels introduces a challenge to HSI analysis because the
underlying assumption governing the clustering and classifica-
tion tasks is that each pixel vector comprises the response of a
single underlying material [3], [4]. Thus, in order to make full
use of the data, hyperspectral unmixing (HU) is an important
step for HSI analysis.

The task of HU is to decompose a mixed pixel into a col-
lection of constituent materials (also called endmembers) and
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their relative proportions (also called abundances) [1], [3]. HU
algorithms mainly rely on the expected type of mixing, which
can be characterized as either a linear or nonlinear model [1].
The nonlinear unmixing model describes the mixed spectrum
by assuming that the observed pixel is generated from a nonlin-
ear function of the abundance associated with the endmembers
[5]. The linear mixing model (LMM) assumes that the different
endmembers do not interfere with each other [6] and lies at the
center of interest of many important developments in HU [1],
[4], [7]–[11]. Despite the fact that the LMM is not always true,
especially under certain scenarios that exhibit strong nonlinear-
ity, it is generally recognized as an acceptable model for many
real-world scenarios [12]. Based on the LMM, many different
HU strategies have been proposed, e.g., endmember determi-
nation plus inversion [1], [13]–[16], dictionary-based sparse
regression [4], [17], [18], and statistical approaches [10]. In this
paper, we focus on the non-negative matrix factorization (NMF)
[19] based approaches to HU.

NMF attempts to decompose a high-dimensional dataset into
two non-negative matrices: one consisting of “basis vectors”
and the other containing “coefficient vectors” [10], [20]. From
the data analysis point of view, NMF is very attractive because
it usually provides a part-based representation of the data,
making the decomposition matrices more intuitive and inter-
pretable. NMF has drawn a lot attention in HU, as it does not
require the pure pixel assumption and can simultaneously deter-
mine endmember spectra and the corresponding abundances.
Unfortunately, the solution space of NMF is very large if no
further constraints are taken into consideration. In addition, due
to the nonconvexity of the objective function of NMF, the algo-
rithm may fall into local minima. To alleviate this situation, the
abundance sum-to-one constraint (ASC), which is the basis of
the LMM, was first added to constrain the solution space. To
further shrink the solution space, additional constraints have
also been imposed upon the abundances [8], [9], [21], [22], as
well as upon the endmembers [6], [10]. We give a brief review
of these methods below.

By employing the variance of the spectral matrix to con-
strain the recovered spectra to be flat and preserve the possible
spectral singularities, Huck et al. [23] proposed minimum dis-
persion constrained NMF (MiniDisCo) to unmix HSIs. By
combining the simplex volume minimization and NMF mod-
els, Miao and Qi [6] proposed the minimum volume constrained
NMF (MVCNMF) approach for HU. Wang et al. [10] proposed
the endmember dissimilarity constrained NMF (EDCNMF)
method, which assumes that the endmember signal should itself
be smooth. Jia and Qian [7] proposed a piecewise smoothness
NMF approach with sparseness constraint (PSnsNMF), which
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imposes both piecewise smoothness and sparseness constraints
on the NMF. Another approach named abundance separation
and abundance smoothness constrained NMF (ASSNMF) [22]
has been proposed by adding an abundance separation con-
straint and an abundance smoothness constraint into the basic
NMF. In recent years, sparsity-based methods have also been
adopted for NMF HU. They assume that, in HSIs, most pix-
els are mixed by a subset of endmembers, rather than all the
endmembers, and thus employ various kinds of sparse con-
straints on the abundances [4], [24]. The L1 regularizer was first
adopted since it yields sparse solutions. However, for spectral
unmixing, the L1 regularizer does not enforce the full additivity
constraint. The S-measure constraint was used to measure the
sparsity of the abundance in [21], and achieved better results
than the L1 regularizer. The authors in [8] also explored the use
of the L1/2 regularizer, which is an alternative to its L1 coun-
terpart. The L1/2 regularizer has been theoretically found to
be a sparsity-promoting function. Furthermore, the L1/2 regu-
larizer can not only provide sparse solutions which are closer
to the truth than those yielded when L1 is used, but is also
computationally efficient.

Although the NMF-related methods have achieved com-
mendable performances, they are far from the optimal solution.
Most of the existing LMM-based methods are on the basis that
the hyperspectral data are only corrupted by Gaussian noise.
However, real HSI data are inevitably corrupted by sparse noise
[25]. Sparse noise, which includes impulse noise, deadlines,
and stripes, is defined as noise of arbitrary magnitude that
contaminates certain specific bands or pixels [26]. The exis-
tence of sparse noise seriously reduces the effectiveness of the
NMF-related HU methods since the objective functions of these
methods are easily dominated by the sparse noise, leading to
a failure of the material decomposition. From another aspect,
in most real HSI unmixing experiments, the bands with high
noise levels are often discarded by manual selection, and only
the high signal-to-noise ratio (SNR) bands are utilized for the
material decomposition in the HSI unmixing procedure. This
processing strategy requires prior information about the noise
distribution in the bands of the HSI to be unmixed. In addition,
it raises a question: can these high-noise bands actually provide
helpful information for the unmixing of the HSI data?

To alleviate the negative influence of the sparse noise exist-
ing in HSI data, we propose a new method named sparsity-
regularized robust NMF (RNMF) for the HU task. In the
proposed method, the corruptions in the data can take arbitrary
values, but are assumed to be sparse. Specifically, we introduce
a sparse matrix to explicitly capture the sparse corruption. This
strategy can significantly improve the robustness of NMF with
respect to sparse noise. In addition, sparsity regularizers are
adopted to enforce the sparsity of the material abundances. The
main contributions of this paper can be summarized as follows.

1) The RNMF model is introduced to unmix hyperspectral
data considering sparse corruptions. A sparse matrix is
used to model the sparse noise in the NMF objective func-
tion. As the support of the sparse matrix usually exists in
some of the pixels of some of the bands, we use the L1,2

norm to restrict the sparse noise.
2) We propose a new coupled blind HU and mixed noised

removal method, and attempt to simultaneously unmix

the low-noise and noisy bands of an HSI in real data
experiments. We investigate the assumption that with the
appropriate modeling of the noise, the noisy bands can
also provide useful information for the HU task.

This paper is organized as follows. After introducing the
related work in Section II, the proposed sparsity-regularized
RNMF is described in Section III. In Section IV, both simu-
lated and real data experiments are described and analyzed, and
the conclusions are drawn in Section V.

II. BACKGROUND

A. Linear Mixing Model

The classical LMM assumes that a pixel in a hyperspec-
tral dataset is a linear mixture of K known material sig-
natures, called endmembers: A := [a1, a2, . . . , aK ], in which
ai ∈ RL×1 is the spectral signature of the ith endmember.
The corresponding proportion is called the abundance and is
denoted as s ∈ RK×1. Based on the LMM, each pixel in an
HSI dataset can be expressed as

x = As+ n (1)

where x ∈ RL×1 is a signature vector corresponding to one
pixel in the HSI and n stands for the noise, which is usually
assumed to obey a Gaussian distribution. Adopting a matrix
notation, an HSI with L bands can be described by a matrix
X ∈ RL×N , where N is the total number of pixels. The LMM
can then be described as

X = AS+N (2)

where S := [s1, s2, . . . , sN ] ∈ RK×N denotes the relative end-
member abundances and N is the noise. In general, two
constraints—the abundance non-negative constraint (ANC)
and the abundance sum-to-one constraint (ASC)—are added to
restrict the LMM model, and can be explicitly given by

S ≥ 0 (3)

1T
KS = 1T

N (4)

in which 1T
K and 1T

N represent all-one vectors with size K and
size N , respectively.

B. Non-Negative Matrix Factorization

NMF has received considerable attention in the field of HU
due to its many advantages. The LMM assumes that the HSI
consists of spectral signatures of endmembers with correspond-
ing non-negative abundances. Therefore, the non-negativity of
A and S mentioned earlier is a natural property of the mea-
sured quantities in the hyperspectral data. In most NMF-related
works, the squared Euclidean distance is adopted as the cost
function, which is built for independent identically distributed
Gaussian noise. The objective function of the NMF method is
presented as follows:

min
A,S

1

2
‖X−AS‖2F , s.t. A ≥ 0,S ≥ 0 (5)

where ‖g‖F is the Frobenius norm of the matrix.
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The solution for the NMF model has been widely studied in
the past few years [27]–[29]. Although the above minimization
problem is separately convex in A and S, it is not simulta-
neously convex with respect to both of the matrices. In this
paper, a multiplicative iterative algorithm is applied to solve the
NMF model, which minimizes a multivariate objective func-
tion by dividing the parameters into two sets and adopting a
dual-step process. In the first step, a subset of the parameters
is updated while the others remain fixed. The second step pro-
ceeds conversely by fixing the newly updated parameters while
estimating the solution of the second subset.

The update rule and the convergence were first investigated
by Lee and Seung [27]. When applied to (5), this multiplicative
update becomes

A← A. ∗XST ./ASST (6a)

S← S. ∗ATX./ATAS (6b)

in which (·)T denotes the transpose of the matrix, and. ∗
and ·/ denote the element-wise multiplication and division,
respectively.

C. NMF With a Sparse Regularizer

Since the objective function is nonconvex, a large number of
minima occur during unmixing, and it is clear that the solution
of the function may not be unique, which leads to instability
in the unmixing. Therefore, more constraints should be added
to the traditional NMF. As shown in [8], sparsity of abundance
is an intrinsic property of hyperspectral data. For this reason,
NMF with a sparsity constraint is considered as the objective
function for the minimization problem, which was introduced
in [8] and [9]. The objective function can be shown as follows:

min
A,S

f(A,S) =
1

2
‖X−AS‖2F + γg(S)

s.t. A ≥ 0,S ≥ 0 (7)

where γ ≥ 0 is the parameter used to control the contribution
of the sparsity measure function g(·) of the matrix S, which is
regarded as the regularization term.

In this paper, we introduce two kinds of sparsity regularizers:
L1 and L1/2 regularizers. The corresponding L1-NMF is given
as follows:

min
A,S

f(A,S) =
1

2
‖X−AS‖2F + γ‖S‖1

s.t. A ≥ 0,S ≥ 0. (8)

The L1/2-NMF is then written as

min
A,S

f(A,S) =
1

2
‖X−AS‖2F + γ‖S‖1/2

s.t. A ≥ 0,S ≥ 0 (9)

in which ‖S‖1/2 :=
L,N∑
i,j

(Si,j)
1/2 and Si,j is the abundance

fraction for the ith endmember at the jth pixel in the HSI.

A multiplicative iterative algorithm can also be used in
sparsity-regularized NMF-based HU [8]. For the L1-NMF
model (8), the update rule developed by Hoyer [30] is presented
as follows:

A← A. ∗XST ./ASST (10a)

S← S.ATX./(ATAS+ γ). (10b)

As for the L1/2-NMF optimization (9), the update rule is [8]

A← A. ∗XST ./ASST (11a)

S← S. ∗ATX./
(
ATAS+

γ

2
S−1/2

)
. (11b)

Likewise, S−1/2 is given by the inverse of the element-wise
square root of each entry in the matrix S. A very small value is
also added to S to avoid a trivial solution.

As we can see, since the optimization of sparsity-regularized
NMF is not globally convex, the solution of (9) [and (8)] is
sensitive to noise. That is to say, the existence of sparse noise of
arbitrary magnitude can significantly degrade the performance
of sparse NMF in HU. Hence, further efforts should be made
to improve the resistance of the HU method to various kinds of
noise.

III. SPARSITY-REGULARIZED RNMF

A. Extended LMM Model

The classical LMM is based on the assumption that the model
is only corrupted by Gaussian noise. Unfortunately, real HSI
data are also inevitably corrupted by sparse noise [26], which
is defined as noise of arbitrary magnitude that contaminates
certain specific bands or pixels. Sparse noise occurs for the
following reasons. First, due to the high spectral resolution of
hyperspectral sensors, the energy used to produce each hyper-
spectral band, which is partitioned from a narrow wavelength,
is limited. As a result, the imaging information can be easily
overwhelmed by various kinds of noise. In addition, the poor
imaging conditions are also responsible for the degraded bands,
due to water vapor and atmospheric effects [31]. Fig. 1 shows
some bands of the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) “Urban” dataset, which include low-
noise bands, noisy bands, and water-absorption bands. Second,
even in the low-noise bands of the HSI, there can often be sparse
and large digital number (DN) variations in some pixels of the
bands with high SNR, due to the sudden and unexpected change
of the spectral range of the illumination source or corruption
of the electronic charge of the sensor [32]. For example, we
present the spectral curves of three pixels which belong to the
same material in Fig. 2. From Fig. 2(b), it can be observed
that the signatures of pixels 1 and 3 have rapid fluctuations
in the low-noise bands. To some extent, these two pixels can
be regarded as outliers. In addition, as these rapid fluctuations
only exist in some specific bands, we can model these rapid
fluctuations as sparse noise.

Based on these assumptions, the LMM can be extended to
consider sparse noise [25]

X = AS+E+N (12)
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Fig. 1. Some bands of the HYDICE Urban dataset. (a) Low-noise band.
(b) Noisy band. (c) Water-absorption band.

Fig. 2. Representation of sparse noise in HSI data. (a) Subset of the HYDICE
Urban data, with noisy and water-absorption bands removed. The three pixels
pointed out in the image belong to the same material. (b) Spectral curves of the
three pixels. The rapid fluctuations in the signatures are assumed to be sparse
noise.

where E represents the sparse noise, which is assumed to cor-
rupt certain specific bands. The ANC and ASC constraints are
also taken into consideration.

Compared to the LMM, the extended LMM splits the noise
into two parts: sparse noise and Gaussian noise. In the extended
LMM, we respectively model the sparse noise and Gaussian
noise, which can significantly improve the results in a real
HSI unmixing procedure. In the next part, we introduce the
RNMF model to unmix HSIs, taking this extended LMM into
consideration.

B. Sparsity-Regularized RNMF Model

The two widely adopted cost functions of NMF (the squared
Euclidean distance and the generalized Kullback–Leibler diver-
gence) are optimal for Gaussian noise and Poisson noise,
respectively [32]. However, in the extended LMM, the sparse
errors in the data may be arbitrarily large, as shown in Figs. 1
and 2. The traditional NMF may break down under this case,
since the error assumptions are apparently violated.

Inspired by the recent work in robust principal component
analysis (RPCA) [33], a novel algorithm named RNMF [34]
was proposed to handle a case with gross errors, and has also
been introduced to treat the nonlinear effect in HSI data [35]–
[37]. On the basis of the extended LMM, we assume that some
entries of the data matrix may be arbitrarily corrupted, but the
corruption is sparse, and is mainly concentrated on some spe-
cific bands of the data. To obtain A and S, RNMF can be
performed by minimizing the difference between (X−E) and
AS, and enforcing non-negativity on A and S. We also assume
that the noise matrix N is Gaussian distributed, and use the

Euclidean distance [8] to measure the difference between the
matrices. The loss function for RNMF is given by

f(A,S,E) =
1

2
‖X−E−AS‖2F . (13)

Due to the presence of E, A, and S are protected from the
sparse noise corruption, contributing to more robustness than
the traditional NMF. Let ‖g‖0,2 be the matrix L0,2 norm, which
counts the number of nonzero rows in its arguments. As the
sparse noise E only exists in a few of the specific bands, we add
the L0,2 norm constraint to E to enforce the row sparsity of the
sparse noise. Finally, the optimization problem of the RNMF
model is

min
A,S,E

1

2
‖X−E−AS‖2F s.t. A ≥ 0,S ≥ 0, ‖E‖0,2 ≤ r

(14)

in which r is the parameter that specifies the maximum number
of nonzero rows in E. Since the L0,2 norm is often difficult
to solve, we relax the L0,2 norm with the L1,2 norm. The
optimization problem (14) can then be reformulated as

min
A,S,E

1

2
‖X−E−AS‖2F + λ‖E‖1,2 s.t. A ≥ 0,S ≥ 0

(15)

where ‖E‖1,2 :=
∑L

i=1 ‖Ei,:‖2 and λ ≥ 0 is the regularization
parameter, which controls the row sparsity of S.

As with NMF, we also consider RNMF with a sparsity con-
straint as the objective function for our minimization problem,
which is the same strategy as that used in [8] and [9]. The
objective function can be shown as follows:

min
A,S,E

f(A,S,E) =
1

2
‖X−E−AS‖2F + λ‖E‖1,2 + γg(S)

s.t. A ≥ 0,S ≥ 0 (16)

where γ ≥ 0 is the parameter used to control the contribution
of the sparsity measure function g(·) of the matrix S, which is
regarded as the regularization term.

In this paper, we adopt RNMF combined with L1 and
L1/2 regularizers, respectively, to fully demonstrate the perfor-
mance of the RNMF model for sparse noise processing. The
corresponding L1-RNMF is given as follows:

min
A,S,E

f(A,S,E) =
1

2
‖X−E−AS‖2F + λ‖E‖1,2 + γ‖S‖1

s.t. A ≥ 0,S ≥ 0. (17)

The L1/2−RNMF is then written as

min
A,S,E

f(A,S,E)=
1

2
‖X−E−AS‖2F + λ‖E‖1,2 + γ‖S‖1/2

s.t. A ≥ 0,S ≥ 0. (18)

In the next part, we demonstrate the expandability of the
NMF model to the RNMF model from the aspect of optimiza-
tion, convergence, and implementation issues, for the cases of
L1-RNMF and L1/2-RNMF.
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C. Update Rules for Sparsity-Regularized RNMF-Based HU

In this part, we extend the multiplicative iterative algorithm
for sparsity-regularized RNMF.

If we regard X−E as one variable, then the update rule of
variables A and S for sparsity-regularized RNMF (16) is the
same as that for sparsity-regularized NMF (7). In addition, the
update of E can be recast as an L1,2 norm based optimization
problem, and we can adopt a soft threshold [38] to solve it. We
describe this soft threshold as Lemma 1 below.

Lemma 1: [38]: Let Q be a given matrix. If the optimal
solution to

min
W

λ‖W‖1,2 + 1

2
‖W −Q‖2F

is W∗ = softλ(Q), then the ith row of W∗ is

[W∗]i,: =

{‖[Q]i,:‖2−λ

‖[Q]i,:‖2
[Q]i,:, if ‖[Q]i,:‖2 ≥ λ

0, otherwise.

By combining (10) and Lemma 1, the update rule for L1-
RNMF becomes

A← A. ∗ (X−E)ST ./ASST (19a)

S← S. ∗AT (X−E)./(ATAS+ γ) (19b)

E← softλ(X−AS). (19c)

Analogously, we can also easily extend the update rule of
L1/2-NMF to L1/2-RNMF by introducing the soft threshold.
We present it as

A← A. ∗ (X−E)ST ./ASST (20a)

S← S. ∗AT (X−E)./
(
ATAS+

γ

2
S−1/2

)
(20b)

E← softλ(X−AS). (20c)

There is no doubt that the update rules of the RNMF-
based methods have a lot of similar properties to those of
the NMF-based methods, due to the high correlation of the
two approaches. Next, we take L1/2-RNMF as an example to
investigate the convergence of the proposed update rule.

D. Convergence of L1/2-RNMF

To ensure the reliability of RNMF-based HU, it is necessary
to analyze the convergence property of the update rule. The
objective function of L1/2-RNMF is denoted as f(A,S,E), as
shown in (18). Our purpose is to prove that this objective func-
tion is nonincreasing in each update step shown in (20). That is
to say, if we set Ak,Sk,Ek as the values of the kth iteration,
and Ak+1,Sk+1,Ek+1 are the values obtained by update rule
(20), then we should prove

f(Ak+1,Sk,Ek) ≤ f(Ak,Sk,Ek) (21a)

f(Ak+1,Sk+1,Ek) ≤ f(Ak+1,Sk,Ek) (21b)

f(Ak+1,Sk+1,Ek+1) ≤ f(Ak+1,Sk+1,Ek). (21c)

In each update step of (20a)–(20b), if we assume M :=
X−Ek, in which M is a constant non-negative matrix, then

the update rule for A and S is the same as in (11). Thus, the
inequality of (21a)–(21b) is the same as L1/2-NMF, which has
been proven in [8] and [27]. As a result, we only need to present
the non-negativity of X−E and the inequality of (21c). The
inequality of (21c) can be rewritten as

‖X−Ek+1 −Ak+1Sk+1‖2F + λ ‖Ek+1‖1,2
≤ ‖X−Ek −Ak+1Sk+1‖2F + λ ‖Ek‖1,2 (22)

which can be easily deduced by Lemma 1 as Ek+1 =
softλ(X−Ak+1Sk+1).

The non-negativity of X−Ek can also be achieved as long
as the initial values of A and S are set to be strictly positive
matrices, and E is a zero matrix. If X−E is non-negative,
the update rule of (20a)–(20b) guarantees that the elements
of the two matrices A and S remain non-negative. In addi-
tion, the non-negativity of X−E can also be retained after
the soft thresholding (20c) if X, A, and S are all non-negative.
All the above make the objective function f(A,S,E) decrease
monotonically at each iteration until convergence has been
reached.

E. Implementation Issues

As mentioned before, the sparsity-regularized RNMF-based
methods are simultaneously nonconvex with respect to A and
S. As a result, the initializations of matrices A, S, and E are
important, and different initial values will result in different
results [39]. The sparse noise matrix E is initialized to be a zero
matrix. For the endmember matrix A, there are generally two
strategies: random initialization and selection from the original
data. The former strategy randomly allocates values between 0
and 1 as entries of A. The latter strategy consists of two meth-
ods. The first method is spectral information divergence (SID)
based selection to determine A, which was used in [10]. The
second method is to utilize unsupervised endmember extrac-
tion methods to identify the endmembers as the input of A
[8], [9]. After determining the endmember matrix A in both
methods, a fully constrained least squares (FCLS) solution [40]
is adopted to generate the abundance matrix S. All of these
initialization methods can guarantee the non-negativity of the
matrices A and S.

The second issue we are concerned about is the ANC and
ASC constraints, which can reduce the solution space of the
optimization. Actually, the non-negativity is guaranteed under
the update rule (20) [(19) for L1-RNMF] if the initial matri-
ces A and S are non-negative, and the initial sparse matrix
E is a zero matrix. The ASC constraint can be implemented
by the effective and widely used method proposed in [40],
where the data matrix X−E and the endmember matrix A
are augmented by a row of constants defined by

(X−E)f =

[
X−E

δ1T
N

]
, Af =

[
A

δ1T
K

]
(23)

where δ is used to adjust the effect of the ASC. A larger value
of δ can lead to a more accurate result, but with a much lower
convergence rate. In order to achieve the desired tradeoff, a
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relatively small value δ = 15 was selected in our experiments,
as introduced in [9].

The third issue is about the parameters in the model.
Parameter λ controls the degree of intensity of the sparse noise.
When λ is set to 0, the optimal solution of model (16) is
A = S = 0 and E = X. On the other hand, the RNMF model
reduces to a standard NMF model if λ is set to a large enough
value. The analysis of parameter λ is given in the experimental
section. The value of parameter γ is dependent on the spar-
sity of the material abundances. Since these abundances cannot
be obtained a priori, we use an estimator for γ based on the
sparseness criteria in [8] and [30], which is defined as

γ =
1√
L

∑
l

√
N − ‖xl‖1/‖xl‖2√

N − 1

where xl denotes the lth band in the HSI.
With the proposed methods, the selection of parameters δ

and γ may not be optimal for all cases. However, in the exper-
iments, we fixed parameters δ and γ using the same strategy
as [8] and [9], to allow a fair comparison between the differ-
ent methods, and, in addition, to reduce the complexity of the
proposed sparsity-regularized RNMF.

We also adopt two stopping criteria for the optimization. The
first criterion is to set an error tolerance that is predefined. Once
the error is successively within the limits of the tolerance 10
times, the iteration is stopped. The other criterion is to set a
maximum iteration number, which was adopted in our experi-
ments, using a maximum iteration number of 3000. Once either
of these criteria is met, the optimization ends. In general, they
are sufficient to guarantee the convergence.

In addition, before the HU, we should point out that we
assume the number of endmembers to be known. Although
a proper estimation is important to the result, it is another
independent topic, which can be solved by resorting to virtual
dimensionality [41] or HySime [42].

The last issue is specifically for L1/2-RNMF. As shown in
[8], in order to improve the robustness of the algorithm, not
all the elements in S are updated following the application of
(20b). For those elements less than a predefined threshold, we
omit the additional term corresponding to the L1/2 sparsity
operator. In our experiments, the threshold was set to 10−4.

The proposed sparsity-regularized RNMF approach is sum-
marized in Algorithm 1.

F. Computational Complexity Analysis

The computational complexity is important for algorithms.
Based on the update rules (10), (11), (19), and (20), it is clear
that the additional calculation of the RNMF-based methods,
compared to the NMF-based methods, is centralized on the
update step of E. We first analyze the additional computational
cost of RNMF compared to the standard NMF. The update
rules of RNMF are very similar to (19) and (20), with a slight
adjustment in the update of S, as follows:

A← A. ∗ (X−E)ST ./ASST (24a)

S← S. ∗AT (X−E)./(ATAS) (24b)

E← softλ(X−AS). (24c)

Algorithm 1. Sparsity-Regularized RNMF for Hyperspectral
Unmixing

1 Input: The observed mixture data X ∈ R
L×N , the number

of endmembers K the parameters λ and γ.
2 Output: Endmember signature matrix A and abundance

matrix S.
3 Initialize A, S, and E by the initialization rules mentioned

before.
4 Repeat until convergence:
5 Update A by (20a);
6 Augment X−E and A to obtain (X−E)fand Af , respec-

tively;
7 Update S by (20b) (the update rule is (19b) for L1-RNMF);
8 Update E by (20c).

The floating-point calculation of each step in (6) and (24)
is presented in Table I. From Table I, we can see that the
total additional floating-point calculation of RNMF compared
to NMF is 2LNK + 6LN + 2L in each step. Without any
obstacles, we can also deduce that the additional calculation of
L1/2-RNMF compared to L1/2-NMF (the same as L1-RNMF
compared to L1-NMF) is also 2LNK + 6LN + 2L in each
step. That is to say, the computational complexities of the
RNMF-based methods and the NMF-based methods are of the
same magnitude.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Both synthetic and real image data experiments were under-
taken to demonstrate the effectiveness of the proposed methods
for spectral unmixing. In the synthetic image data experiments,
we compared L1-RNMF and L1/2-RNMF with L1-NMF and
L1/2-NMF, respectively, to demonstrate the robustness of the
proposed sparsity-regularized RNMF methods. In the real data
experiments, we compared the performance of L1-RNMF,
L1/2-RNMF, L1-NMF, L1/2-NMF, and L1/2-NMF with a data
whitening step (denoted as L1/2-WNMF), robust NMF (rNMF)
[35], EDCNMF [10], and simplex identification via split aug-
mented Lagrangian (SISAL) [16]. For the case of L1/2-WNMF,
the strategy in [43] was adopted for the data whitening step, in
which multiple regression theory [42], [44], [45] is used to esti-
mate the noise variance of the HSI. Subsequently, L1/2-NMF
was adopted to unmix the whitened HSI data. The results were
evaluated using the spectral angle distance (SAD) and root-
mean-square error (RMSE). The SAD was used to compare the
similarity of the endmember signature Ak and its estimate Âk,
and is defined as

SADk = arccos

(
AT

k Âk

‖AT
k ‖‖Âk‖

)
. (25)

The RMSE is defined as

RMSEk =

(
1

N
|Sk − Ŝk|2

)1/2

(26)

where Ŝk is the ground-truth abundance matrix for the kth
endmember.
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TABLE I
FLOATING-POINT CALCULATION AT EACH ITERATION IN NMF AND RNMF

Fig. 3. Example endmember spectra for the synthetic data.

A. Simulated Data Experiments

In the synthetic experiments, eight spectral signatures were
chosen from the USGS digital spectral library. Fig. 3 shows
some of the endmember signatures and their names. The gen-
eration of abundances was similar to the method used in [8]
and [6] and can be described as follows: 1) an image of size
64× 64 is divided into 8× 8 patches; 2) each patch is filled up
by only one type of signature, which is randomly selected from
the eight; 3) a 7× 7 low-pass filter is utilized to generate mixed
pixels; 4) for the pixels whose abundance is larger than 0.8, a
mixture composed of all the endmembers with the abundances
of 1/K takes their place; and 5) the noise is simulated.

Two kinds of noise were simultaneously added to the syn-
thetic data. First, zero-mean Gaussian noise was added. Here,
the SNR is defined as follows:

SNR = 10 log
10

E[xTx]

E[nT n]
(27)

in which x and n represent the observation and noise of a pixel,
respectively, and E[·] denotes the expectation operator. Second,
sparse noise was added to certain bands of the synthetic image.
We added impulse noise to the image, since the intensity of the
impulse noise can be easily measured. We use ratio to denote
the percentage of the bands corrupted by the impulse noise, and
sp to denote the intensity of the impulse noise added to each
band. For example, if ratio = 0.1 and sp = 0.1, this means
that 10% of the synthetic image bands are corrupted by impulse
noise, and for each corrupted band image, 10% of the pixels are
corrupted by impulse noise.

By following these procedures, a synthetic image corrupted
by Gaussian noise and sparse noise was produced. In the sim-
ulated experiments, A was initialized by setting its entries to
random values in the interval [0,1], then FCLS [40] was used to
acquire the initial S. Each experiment was repeated 10 times to
ensure a reliable comparison.

1) Experiment 1 (Parameter Analysis): In this experiment,
the influence of parameter λ in the RNMF-based methods was
considered when SNR = 30dB, K = 4, ratio = 0.2, and sp =
0.2. Here, the results of L1-NMF and L1/2-NMF are taken
as the references. Fig. 4 shows how the performance of L1-
RNMF varies with parameter λ, and Fig. 5 shows the case
of L1/2-RNMF. As shown in Figs. 4 and 5, both L1-RNMF
and L1/2-RNMF perform worse than the baseline methods
when the value of parameter λ is relatively low. As the value
of λ increases, the performances of the RNMF-based meth-
ods gradually improve. In particular, L1-RNMF attains a better
performance than L1-NMF in both SAD and RMSE when λ
is larger than 0.8, and L1/2-RNMF obtains a better perfor-
mance when λ is larger than 1.8. This verifies the effectiveness
of incorporating the robust estimation in the HU by adopt-
ing a sparse matrix to model the sparse noise. On the other
hand, when λ increases to a certain level, the performance of
the RNMF-based methods decreases. In particular, the perfor-
mance of the RNMF-based methods will reduce to the baseline
methods if λ is set to infinitely large. In fact, the optimal value
of parameter λ in the RNMF-based methods is related to the
size of the image and the intensity of the sparse noise. The adap-
tive selection of parameter λ still remains a key problem. In the
simulated experiments, we set λ by searching the range [0.1, 5]
at 20 equally spaced values.

2) Experiment 2 (Robustness Analysis to Gaussian Noise):
In this experiment, four different HU algorithms were per-
formed with different Gaussian noise levels, with K = 4,
ratio = 0.2, and sp = 0.2. The SNR was assigned as 10, 20,
30, and 40 dB, respectively. Fig. 6 shows the SAD values of
the estimated endmember signatures, and the RMSE of the
estimated abundance maps as functions of the SNR. From the
figure, we can see that the performances of the RNMF-based
methods have the same trend as those of the NMF-based meth-
ods. This indicates that the RNMF-based methods are robust to
Gaussian noise, as are the NMF-based methods. In addition, the
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Fig. 4. Performance of L1-RNMF with respect to parameter λ in terms of
(a) SAD and (b) RMSE.

Fig. 5. Performance of L1/2-RNMF with respect to parameter λ in terms of
(a) SAD and (b) RMSE.

Fig. 6. Comparison of the algorithms at different Gaussian noise levels in
terms of (a) SAD and (b) RMSE.

performance of L1-RNMF is better than that of L1-NMF, and
L1/2-RNMF outperforms L1/2-NMF. This is mainly because
the RNMF-based methods are robust to sparse noise. On the
other hand, the NMF-based methods perform worse than the
RNMF-based methods under the corruption of sparse noise.

3) Experiment 3 (Robustness Analysis to Sparse Noise):
We also tested the robustness of the proposed RNMF-based
methods with respect to sparse noise. The number of end-
members K was fixed as 4, and the Gaussian noise level
SNR was set to 30 dB. Fig. 7 presents the SAD and RMSE
values of the four HU results in the cases of four different
sparse noise intensities, namely, ratio = sp = 0, 0.1, 0.2, 0.3,
respectively. Here, ratio = sp = 0 means that no sparse noise
was added to the simulated data. In this case, as shown in
Fig. 7, the performances of the RNMF-based methods are the
same as those of the NMF-based methods. However, as the
intensity of the sparse noise increases, the SAD and RMSE
values of the NMF-based methods increase rapidly. This
indicates that the performances of L1-NMF and L1/2-NMF are
seriously impacted by the sparse noise. On the other hand, the
RNMF-based methods are robust to the sparse noise. The SAD
and RMSE values of L1-RNMF and L1/2-RNMF are stable

Fig. 7. Comparison of the algorithms at different sparse noise levels in terms
of (a) SAD and (b) RMSE.

Fig. 8. Comparison of the algorithms at different numbers of endmembers in
terms of (a) SAD and (b) RMSE.

with the increase in the sparse noise intensity. This confirms
the great advantage of the RNMF-based methods in solving the
HU problem in the presence of sparse noise.

4) Experiment 4 (Effect of Different Numbers of
Endmembers): This experiment evaluated the performances
of the four unmixing methods when the data were made up
of different numbers of endmembers. The SNR was set as
30 dB, ratio = sp = 0.1, and K was varied from 4 to 8. The
results are shown in Fig. 8. From the figure, we can see that the
performances of the four methods decrease when the number
of endmembers increases. On the whole, the results of the
RNMF-based methods are superior to those of the NMF-based
methods for all the cases of K. This is mainly due to the sparse
noise, which greatly affects the performance of the NMF-based
methods. Meanwhile, the RNMF-based methods can overcome
the impact of the sparse noise. This further indicates the
robustness of RNMF to sparse noise.

B. Real Data Experiments

We now present the results of applying the RNMF-based
methods to a real-world dataset. The Urban dataset was col-
lected by the HYDICE sensor and can be downloaded online at
http://www.agc.army.mil/. In the Urban dataset, there are 210
bands that cover the wavelength range of 400–2500 nm. Fig. 1
shows some bands of the original data, which include low-noise
bands, noisy bands, and water-absorption bands. Here, we use
“low-noise” to describe the high-SNR bands, which include
bands 5–75, 77–86, 88–100, 112–135, and 154–197. In most
of the recent studies [8], [21], [22], only these high-SNR bands
were adopted to unmix the Urban data. However, it is worth
mentioning that these low-noise bands are also corrupted by
sparse noise, as presented in Fig. 2. The existence of sparse
noise can degrade the performance of most of the existing
unmixing methods. The noisy bands include bands 1–4, 76,
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Fig. 9. Benchmark abundance maps for four targets in the Urban HYDICE data. (a) Asphalt. (b) Grass. (c) Roof. (d) Tree.

Fig. 10. Abundance maps of different endmembers using L1/2-NMF with the low-noise image. (a) Asphalt. (b) Grass. (c) Roof. (d) Tree.

Fig. 11. Abundance maps of different endmembers using L1/2-RNMF with the low-noise image. (a) Asphalt. (b) Grass. (c) Roof. (d) Tree.
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Fig. 12. Endmember signatures selected from the spectral library and extracted by L1/2-NMF and L1/2-RNMF with the low-noise image. (a) Collected from the
spectral library. (b) Extracted by L1/2-NMF. (c) Extracted by L1/2-RNMF.

87, 101–104, 110–111, 136–138, 152–153, and 198–207. The
rest of the bands are categorized as water-absorption bands,
which cannot provide any useful information, only noise. As
described above, the noisy and water-absorption bands are
discarded in the traditional unmixing procedures. In this paper,
we first present the HU results of the proposed methods with
the low-noise image, which consists of 162 low-noise bands of

the Urban HYDICE data, and we then present the results of
the four HU methods with the noisy image, which consists
of 162 low-noise bands and 27 noisy bands of the Urban
HYDICE data. This strategy can further prove the robustness
of the proposed RNMF-based methods to sparse noise. In the
real data experiments, parameter λ for all the RNMF-based
methods was set to 2.
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TABLE II
SAD VALUES OF THE DIFFERENT METHODS WITH THE LOW-NOISE IMAGE

Fig. 13. Abundance maps of different endmembers using L1/2-NMF with the noisy image. (a) Asphalt. (b) Grass. (c) Roof. (d) Tree.

Fig. 14. Abundance maps of different endmembers using L1/2-RNMF with the noisy image. (a) Asphalt. (b) Grass. (c) Roof. (d) Tree.

Fig. 15. Endmember signatures selected from the spectral library and extracted by L1/2-NMF and L1/2-RNMF with the noisy image. (a) Collected from the
spectral library. (b) Extracted by L1/2-NMF. (c) Extracted by L1/2-RNMF.

1) Unmixing Results With the Low-Noise Image: In light
of the previous analysis [8], [24], four types of signatures
named “Asphalt,” “Grass,” “Roof,” and “Tree” were esti-
mated in the image. The reference signatures were collected
from the spectral library which can be downloaded from
http://www.agc.army.mil/. The benchmark abundance maps of
each signature shown in Fig. 9 were achieved via the method
introduced in [7] and [24]. For all the methods, we used the
SID-based method to select four pixels as the initial endmem-
ber matrix. In addition, the initial endmember matrix was the

same for all the unmixing methods, and the experiments were
repeated 10 times, to ensure a reliable comparison.

To save space, we take the L1/2 sparse regularization as
an example and only show the results of L1/2-NMF and
L1/2-RNMF. We first present the abundance maps of each end-
member obtained by the different unmixing methods. Fig. 10
illustrates the resulting abundances by L1/2-NMF, and Fig. 11
shows the results of L1/2-RNMF. Figs. 10 and 11 are both
grayscale abundance maps, where a dark pixel denotes a low
abundance of the corresponding endmember. Subsequently,
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TABLE III
SAD VALUES OF THE DIFFERENT METHODS WITH THE NOISY IMAGE

Fig. 16. Some bands of the HYDICE Urban dataset. (a) Band 28. (b) Band 112. (c) Band 206.

Fig. 17. Some bands of the sparse error matrix E obtained by L1/2-RNMF on the noisy image. (a) Band 28. (b) Band 112. (c) Band 206.

the endmember signatures selected from the spectral library
and extracted by L1/2-NMF and L1/2-RNMF are presented
in Fig. 12. Meanwhile, Table II gives the mean SAD values
obtained by the four HU methods to present the quantitative
evaluations. The best results for the quality index are labeled in
bold. From the table, it can be clearly observed that the L1/2-
regularized methods achieve lower mean SAD values than the
L1-regularized methods. Furthermore, L1/2-RNMF achieves a
lower mean SAD value than L1/2-NMF, because of the sparse
modeling of the sparse noise. Similarly, the unmixing result
of L1-RNMF is better than that of L1-NMF. L1/2-WNMF
achieves higher SAD values than L1/2-RNMF, which suggests
that it is more appropriate to model the Urban data as corrupted
by mixed noise rather than nonidd Gaussian noise. EDCNMF
and rNMF perform better than the L1-NMF method, but not
as well as the L1/2-RNMF method. SISAL has the largest
SAD values. All in all, it can be concluded that the proposed
RNMF-based methods are generally more robust than the cor-
responding NMF-based methods, with respect to the sparse
noise.

2) Unmixing Results With the Noisy Image: To further
demonstrate the robustness of the proposed RNMF-based
methods to sparse noise, we also applied the unmixing methods

to the noisy image, which contains 189 bands in total. To
ensure a reliable comparison between the unmixing results with
the low-noise image and the noisy image, the initial endmem-
ber matrices were composed of the pixels selected from the
same places in the Urban data. Fig. 13 presents the resulting
abundances by L1/2-NMF, and Fig. 14 shows the results of
L1/2-RNMF. Table III presents the mean SAD values. Note that
the endmember signatures collected from the spectral library
were also corrupted by noise, as shown in Fig. 15(a). Therefore,
before computing the SAD values, we removed the spectra of
the noisy bands and only calculated the spectra of the low-
noise bands. For the unmixing results with the noisy image,
similar to the low-noise image case, it was found that the
proposed RNMF-based methods perform better than the corre-
sponding NMF-based methods, which clearly shows the strong
robustness to the sparse noise existing in the noisy image.

In addition, comparing the unmixing results of the low-noise
image with those of the noisy image, we can further observe
that the results of the RNMF-based methods L1/2-RNMF
and L1-RNMF are relatively stable; meanwhile, the results
of the NMF-based methods L1/2-NMF, L1-NMF, EDCNMF,
and SISAL show a significant decline. This further indicates
the robustness of the RNMF-based methods to sparse noise.
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Furthermore, by comparing the results of L1/2-RNMF with
the low-noise image and the noisy image, we can see that the
average SAD value of the low-noise image shown in Table II
is slightly higher than that of the noisy image presented in
Table III. This suggests that the noisy bands of the Urban
dataset can also provide useful information for the unmixing if
appropriate and rational constraints for the noise are enforced.

To further investigate the effectiveness of the proposed
RNMF method, we also present some bands of the sparse
error matrix E obtained by L1/2-RNMF with the noisy image.
Fig. 16 presents some bands of the Urban data, and Fig. 17
shows the corresponding bands of sparse matrix E obtained
by L1/2-RNMF on the noisy image. From the figure, it can be
observed that most of the deadlines, stripes, and impulse noise
present in the original band 206 are included in the sparse error
matrix E. In addition, some edge information is also included in
the sparse error matrix E, as shown in Fig. 17(b) and (c). It can
therefore be concluded that after excluding the sparse noise, the
endmembers and abundances estimated by the proposed RNMF
method are more accurate.

V. CONCLUSION

In this paper, we first proposed an extended LMM which sep-
arately models the sparse noise and Gaussian noise. Based on
the extended LMM model, sparsity-regularized RNMF meth-
ods were then proposed to unmix hyperspectral data. Compared
to the existing sparsity-regularized NMF methods, the proposed
sparsity-regularized RNMF methods can lead to more desirable
results when handling sparse noise. In addition, we studied the
real HYDICE Urban dataset in depth and partitioned it into
three subsets, i.e., low-noise bands, noisy bands, and water-
absorption bands. We then compared the results of the proposed
sparsity-regularized RNMF methods with a low-noise image
consisting of low-noise bands and a noisy image consisting of
both low-noise and noisy bands, and concluded that the noisy
bands can also provide appropriate and useful information for
urban data unmixing.

Nevertheless, the proposed methods still have room for
improvement, and the adaptive selection of parameter λ
remains a key problem. Moreover, the proposed sparsity-
regularized RNMF methods are special cases of the following
RNMF-based unmixing model:

min
A,S,E

f(A,S,E) =
1

2
‖X−E−AS‖2F + λ‖E‖1,2

+ βh(A) + γg(S) s.t. A ≥ 0, S ≥ 0 (28)

where h and g are regularizers on the endmember matrix A
and abundance matrix S, respectively. The robustness of the
RNMF model with various other regularizers besides the spar-
sity regularizer will be explored and implemented in our future
work.
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